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The Interface of the Ising Model 
and the Brownian Sheet 
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We study the limit theorem related to the interface of the three-dimensional 
Ising model. Dobrushin proved that the interface does not fluctuate and 
becomes rigid for sufficiently large ~. We define the random field XL(t, s), 0 <~ t, 
s ~< 1, on the interface, and prove that XL(t, s) converges to the Brownian sheet 
as L ~ oe for sufficiently large/~, where L denotes the size of the system. This 
result does not mean that the interface itself converges to the Brownian sheet. 
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1. I N T R O D U C T I O N  

Consider the three-dimensional Ising model in a box, V= V L , M ,  

VL,M = { tE 2~3;O~< tl,  t2 <~L, - - M  <~t3 <~M + I } 

A configuration space in V is given by 

O r =  {+1,  - 1 }  v 

Let us consider the boundary condition co_+ given by 

co+(t)= {+1  if / ' 3 > 0 ,  
- 1 if t3~<0 , t~Z3\V 

We associate to each configuration ~ e f2 v the interaction energy with 
the boundary condition co+, 

Hv(~[co_+) = - -J  ~ ~ ( i ) ~ ( j ) - - J  ~ ~(i) co_+(j), J > 0  
i, j E  V;li  Jt -- 1 i t  V , j ~  V c 

l i - - j I  = 1 
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The Gibbs state on f2 v for Hv(~lco+) is defined by 

1 
Pv,_+ (~) = ~ exp[ - f lHv(~lco+ )3 (1.1) 

", v,_+ 

where/~ > 0 is the reciprocal temperature. 
Due to the boundary condition ~o+, there exists a surface 2 by which 

the box V is decomposed into an upper region V~, surrounded by ( + ) spins 
and a lower region V] surrounded by ( - )  spins. Such a surface 2 is called 
an interface. As in the two-dimensional case, it is convenient to describe 
~ s  by a family of contours (FI ..... Fk) in V~u V~ and an interface 2. 
Setting 2 J =  1, one rewrites the probability distribution (1.1) in the form 

Pv,_+(~)=~--~veXp -fl  121-/~ Ir, I 
i = 1  

(1.2) 

if ~ is described by (2, F,  ,..., F~). 
The probability distribution of 2 is derived from (1.2) as follows: 

PLy(2)  = i exp( --/~ [2[) Z~ ,  +. Z/~,_ (1.3) 

where 

Zv~.+ and Zv~,_ 

are partition functions in V~ and V~ with ( + )  and ( - )  boundary 
conditions, respectively. 

When/~ = oo the interface is perfectly flat. We call such a perfect flat 
surface a "standard plane" and denote it by S. The interface 2 will be defor- 
med for finite value of/~, and this deformation is decomposed into a family 
of elementary shapes w = (Wl ,..., wn) called standard walls (see Fig. 1). This 
notion of standard wall was first introduced by Dobrushin (1) for the study 
of the existence of non-translation-invariant Gibbs states (see also Ref. 2). 
Dobrushin proved that for sufficiently large /~ the interface A does not 
fluctuate and becomes "rigid" in the following sense: the probability 
that the interface passes through a point that is not on S tends to zero as 
/~ ~ oo. This implies the existence of non-translation-invariant Gibbs states 
for sufficiently large/L 

Our main interest is to investigate the fluctuation on this "nearly flat" 
interface for sufficiently large/~ by considering some random field. 

Before describing our results we shall describe the probability dis- 
tribution (1.3) in a more convenient form. We use the method of polymer 
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l ~ ; (w I ..... w 7) 

/ 

~',\),'\ \\,~'~ ",, '  ~ ",, \ ~, " , \ \ \ \ \ " ,  \ V  

\ 

Fig. 1. The representation of 2 by the family of standard walls. 

expansion developed by Gallavotti et al. {3 5) and Del Grosso. (6) Applying 
the polymer expansion to partition functions 

Zv~,+ and ZQ. 

for sufficiently large [1, we get 

PL.M(2)=~, exp --[1 ~ ]wil--Uv(wl ..... wn) (1.4) 
L,M i= 1 

when the interface 2 is described by the family w = ( w  1 . . . . .  Wn) of standard 
walls. Here, Iwil is the excess area of wi and U~v(W~,..., %) is the interaction 
term of (w 1 ,..., wn), which is explicitly given in terms of polymer functionals 
(see Refs. 8 and 9 for details). 
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If we write U~v(W~,..., %) as the sum of potentials q~v(" ), 

Uv(w,,..., w,)= wi ) 
{ il,...,ik } 
= {1,...,n} 

then the potential ~ (wl , . . . ,  wk) decays exponentially as the 
distance of the standard walls tends to ~ ,  

Iq~(wl,..., wk)l ~< c(fl) Min Iwil exp[-cfld(Wl,...,  wk)] 
l <~i<~k 

mutual 

where d(wl,..., wk) is the shortest length of the path connecting all 
WI,..., W k �9 

Hence, the family of standard walls is considered to be the weakly 
dependent sequence of the random variables if fi is sufficiently large. 

Letting M ~ ,  we have that PL, M(~) weakly converges to the 
probability distribution PL(2) of the interface 2 in VL= {t~Z3; 0~<tl, 
t2<~L}. 

2. S T A T E M E N T  OF R E S U L T  

In the previous section we regarded the interface 2 as the configuration 
w = (w~ ..... wn) of standard walls. 

Now, we shall define the random field Xr(t, s)(w), 0 ~< t, s ~< 1. Let 
be the set of all standard walls on S and T: ~ ~ ~ be the mapping that 
maps every point of w to its mirror image with respect to the standard 
plane S (see Fig. 2). 

We consider the functional F(w) defined for w ~  and assume the 
following three conditions on F: 

(0) F is not constantly 0, i.e., F ~ 0. 

(i) F(Tw)=-F(w) .  

(ii) IF(w)t <exp(co [wl) for some Co>0. 

S S 

Fig. 2. The transformation T. 
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For a given family w of standard walls on S, we define XC(t, s)(w), 
0~< t, s~< 1, by 

1 xL(t, s)(w) = ~--Z ~ F(w) 
w ~ W ; W  

[ 0 , t L ]  x [ 0 , s L ]  

where a > 0 and the sum runs over all w e w contained in 

{z = (Zl, z2, �89 e S; 0 <~ z 1 <~ tL and 0 <~ z2 <~ sL} 

T h e o r e m .  For sufficiently large/~ there exists a function OF(/?)> 0, 
and the finite-dimensional distribution of XL(t, s) with a = ar(fl) converges 
to the corresponding distribution of the Brownian sheet, i.e., 

PL(XL(ti, Si) e [r, ,  si] ( i=  1,..., k)) 

~P(W( t i ,  s i ) e [T , ,S i ]  ( i=1  ..... k)) as L ~ o o  

where T~ < Si (i = 1,..., k) and (W(t, s), P) is a Brownian sheet. 
For the convenience of the reader we give the definition of Brownian 

sheet in the following. Let ~ be the set of all continuous functionsf(t ,  s) on 
[0, 1] 2 such tha t f ( t ,  s ) = 0  if t = 0  or s = 0 .  The set A of [0, 1] 2 is called a 
block if it is given in the form A = (sl, t l ]  x (s2,/23- In a similar way to the 
Brownian motion, we define the increment W(A) for a stochastic process 
W= {W(t,s); ( t , s )e  [0, 1] 2} by 

W(A) = W(tt, t 2 ) -  W(s~, t2) - W(t,, s2) + W(sl, s2) 

The Brownian sheet W =  {W(t, s); (t, s )e  [0, 1] z} is characterized by the 
following two conditions: 

(i) P ( W ~ ) =  1. 

(ii) If the set of blocks A~ ..... A k are disjoint, then W(A~),..., W(Ak) 
are independent and normally distributed with mean 0 and 
variances ]A1J,..., IAkl, where IAi] is the area of the block A~. 

We define functions Z~, J = 1,..., k, by 

L {1 if w=[O,  tsL ] x [ O , s s L  ] 
Z) (w)= 0 otherwise 

For any y~ ..... Yk ~ ~, we define the function fL =fL(Yl,--., Yk) of w by 

k 

j r ( w ) =  ~ y~ ~ F(w) zL(W) 
i =  1 w e w  
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Consider the characteristic function 0~(y) L = Ok(y1 ..... Yk) of random vectors 

defined by 
0~(y) = (exp [~L ( �9 ) /~L]  )eL 

We prove that 0~(y) converges to the corresponding characteristic function 
of the Brownian sheet (see Ref. 9). 
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