Journal of Statistical Physics, Vol. 47, Nos. 5/6, 1987

The Interface of the Ising Model and the Brownian Sheet

Koji Kuroda¹ and Hiroko Manaka¹

Received October 30, 1986; revision received January 7, 1987

We study the limit theorem related to the interface of the three-dimensional Ising model. Dobrushin proved that the interface does not fluctuate and becomes rigid for sufficiently large β . We define the random field $X^L(t, s), 0 \le t$, $s \le 1$, on the interface, and prove that $X^L(t, s)$ converges to the Brownian sheet as $L \to \infty$ for sufficiently large β , where L denotes the size of the system. This result does not mean that the interface itself converges to the Brownian sheet.

KEY WORDS: Interface; Ising model; standard wall; Brownian sheet.

1. INTRODUCTION

Consider the three-dimensional Ising model in a box, $V = V_{L,M}$,

$$V_{L,M} = \{ t \in \mathbb{Z}^3; 0 \le t_1, t_2 \le L, -M \le t_3 \le M+1 \}$$

A configuration space in V is given by

$$\Omega_V = \{+1, -1\}^V$$

Let us consider the boundary condition ω_{\pm} given by

$$\omega_{\pm}(t) = \begin{cases} +1 & \text{if } t_3 > 0, \\ -1 & \text{if } t_3 \leq 0, \end{cases} \quad t \in \mathbb{Z}^3 \backslash V$$

We associate to each configuration $\xi \in \Omega_{V}$ the interaction energy with the boundary condition ω_{+} ,

$$H_{\nu}(\xi \mid \omega_{\pm}) = -J \sum_{\substack{i, j \in V; |i-j| = 1 \\ |i-j| = 1}} \xi(i) \,\xi(j) - J \sum_{\substack{i \in V, j \in V^c \\ |i-j| = 1}} \xi(i) \,\omega_{\pm}(j), \qquad J > 0$$

¹ Department of Mathematics, Keio University, Japan.

The Gibbs state on Ω_{ν} for $H_{\nu}(\xi | \omega_{\pm})$ is defined by

$$P_{\nu,\pm}(\xi) = \frac{1}{Z_{\nu,\pm}} \exp[-\beta H_{\nu}(\xi \,|\, \omega_{\pm})]$$
(1.1)

where $\beta > 0$ is the reciprocal temperature.

Due to the boundary condition ω_{\pm} , there exists a surface λ by which the box V is decomposed into an upper region V_{λ}^{u} surrounded by (+) spins and a lower region V_{λ}^{l} surrounded by (-) spins. Such a surface λ is called an interface. As in the two-dimensional case, it is convenient to describe $\xi \in \Omega_{V}$ by a family of contours $(\Gamma_{1},...,\Gamma_{k})$ in $V_{\lambda}^{u} \cup V_{\lambda}^{l}$ and an interface λ . Setting 2J = 1, one rewrites the probability distribution (1.1) in the form

$$P_{\nu,\pm}(\xi) = \frac{1}{Z_{\nu}} \exp\left(-\beta |\lambda| - \beta \sum_{i=1}^{k} |\Gamma_i|\right)$$
(1.2)

if ξ is described by $(\lambda, \Gamma_1, ..., \Gamma_k)$.

The probability distribution of λ is derived from (1.2) as follows:

$$P_{L,M}(\lambda) = \frac{1}{Z_{\nu}} \exp(-\beta |\lambda|) Z_{\nu_{\lambda}^{u}, +} \cdot Z_{\nu_{\lambda}^{l}, -}$$
(1.3)

where

$$Z_{V_{\lambda}^{\mu}+}$$
 and $Z_{V_{\lambda}^{l}+}$

are partition functions in V_{λ}^{u} and V_{λ}^{l} with (+) and (-) boundary conditions, respectively.

When $\beta = \infty$ the interface is perfectly flat. We call such a perfect flat surface a "standard plane" and denote it by S. The interface λ will be deformed for finite value of β , and this deformation is decomposed into a family of elementary shapes $\mathbf{w} = (w_1, ..., w_n)$ called standard walls (see Fig. 1). This notion of standard wall was first introduced by Dobrushin⁽¹⁾ for the study of the existence of non-translation-invariant Gibbs states (see also Ref. 2). Dobrushin proved that for sufficiently large β the interface λ does not fluctuate and becomes "rigid" in the following sense: the probability that the interface passes through a point that is not on S tends to zero as $\beta \to \infty$. This implies the existence of non-translation-invariant Gibbs states for sufficiently large β .

Our main interest is to investigate the fluctuation on this "nearly flat" interface for sufficiently large β by considering some random field.

Before describing our results we shall describe the probability distribution (1.3) in a more convenient form. We use the method of polymer

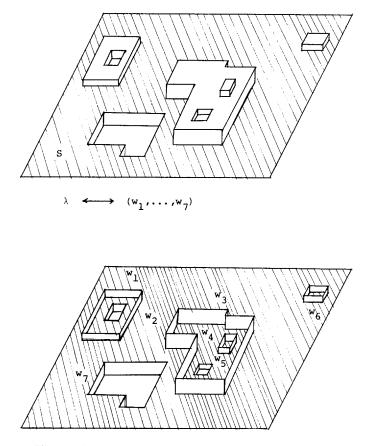


Fig. 1. The representation of λ by the family of standard walls.

expansion developed by Gallavotti *et al.*⁽³⁻⁵⁾ and Del Grosso.^{<math>(6)} Applying the polymer expansion to partition functions</sup>

$$Z_{V_{i}^{u},+}$$
 and $Z_{V_{i}^{l},-}$

for sufficiently large β , we get

$$P_{L,M}(\lambda) = \frac{1}{Z_{L,M}} \exp\left[-\beta \sum_{i=1}^{n} |w_i| - U_{\mathcal{V}}^{\beta}(w_1,...,w_n)\right]$$
(1.4)

when the interface λ is described by the family $\mathbf{w} = (w_1, ..., w_n)$ of standard walls. Here, $|w_i|$ is the excess area of w_i and $U^{\beta}_{\nu}(w_1, ..., w_n)$ is the interaction term of $(w_1, ..., w_n)$, which is explicitly given in terms of polymer functionals (see Refs. 8 and 9 for details).

If we write $U_{\nu}^{\beta}(w_1,...,w_n)$ as the sum of potentials $\Phi_{\nu}^{\beta}(\cdot)$,

$$U_{\mathcal{V}}(w_1,...,w_n) = \sum_{\substack{\{i_1,...,i_k\}\\ \in \{1,...,n\}}} \Phi^{\beta}_{\mathcal{V}}(w_{i_1},...,w_{i_k})$$

then the potential $\Phi_{V}^{\beta}(w_{1},...,w_{k})$ decays exponentially as the mutual distance of the standard walls tends to ∞ ,

$$|\Phi_{\mathcal{V}}^{\beta}(w_1,...,w_k)| \leq c(\beta) \min_{1 \leq i \leq k} |w_i| \exp\left[-c\beta d(w_1,...,w_k)\right]$$

where $d(w_1,...,w_k)$ is the shortest length of the path connecting all $w_1,...,w_k$.

Hence, the family of standard walls is considered to be the weakly dependent sequence of the random variables if β is sufficiently large.

Letting $M \to \infty$, we have that $P_{L,M}(\lambda)$ weakly converges to the probability distribution $P_L(\lambda)$ of the interface λ in $V_L = \{t \in \mathbb{Z}^3; 0 \le t_1, t_2 \le L\}$.

2. STATEMENT OF RESULT

In the previous section we regarded the interface λ as the configuration $\mathbf{w} = (w_1, ..., w_n)$ of standard walls.

Now, we shall define the random field $X^{L}(t, s)(\mathbf{w}), 0 \le t, s \le 1$. Let \mathscr{P} be the set of all standard walls on S and $T: \mathscr{P} \to \mathscr{P}$ be the mapping that maps every point of w to its mirror image with respect to the standard plane S (see Fig. 2).

We consider the functional F(w) defined for $w \in \mathscr{P}$ and assume the following three conditions on F:

- (0) F is not constantly 0, i.e., $F \neq 0$.
 - (i) F(Tw) = -F(w).
 - (ii) $|F(w)| < \exp(c_0 |w|)$ for some $c_0 > 0$.

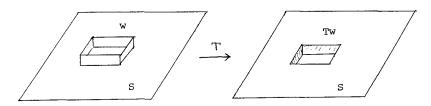


Fig. 2. The transformation T.

Interface of the Ising Model

For a given family w of standard walls on S, we define $X^{L}(t, s)(\mathbf{w})$, $0 \le t, s \le 1$, by

$$X^{L}(t, s)(\mathbf{w}) = \frac{1}{\sigma L} \sum_{\substack{w \in \mathbf{w}; w \\ \subset [0, tL] \times [0, sL]}} F(w)$$

where $\sigma > 0$ and the sum runs over all $w \in \mathbf{w}$ contained in

$$\{z = (z_1, z_2, \frac{1}{2}) \in S; 0 \leq z_1 \leq tL \text{ and } 0 \leq z_2 \leq sL \}$$

Theorem. For sufficiently large β there exists a function $\sigma_F(\beta) > 0$, and the finite-dimensional distribution of $X^L(t, s)$ with $\sigma = \sigma_F(\beta)$ converges to the corresponding distribution of the Brownian sheet, i.e.,

$$\begin{aligned} P_L(X^L(t_i, s_i) &\in [T_i, S_i] \quad (i = 1, ..., k)) \\ &\rightarrow P(W(t_i, s_i) &\in [T_i, S_i] \quad (i = 1, ..., k)) \quad \text{as} \quad L \to \infty \end{aligned}$$

where $T_i < S_i$ (i = 1,...,k) and (W(t, s), P) is a Brownian sheet.

For the convenience of the reader we give the definition of Brownian sheet in the following. Let \mathscr{C} be the set of all continuous functions f(t, s) on $[0, 1]^2$ such that f(t, s) = 0 if t = 0 or s = 0. The set A of $[0, 1]^2$ is called a block if it is given in the form $A = (s_1, t_1] \times (s_2, t_2]$. In a similar way to the Brownian motion, we define the increment W(A) for a stochastic process $W = \{W(t, s); (t, s) \in [0, 1]^2\}$ by

$$W(A) = W(t_1, t_2) - W(s_1, t_2) - W(t_1, s_2) + W(s_1, s_2)$$

The Brownian sheet $W = \{W(t, s); (t, s) \in [0, 1]^2\}$ is characterized by the following two conditions:

- (i) $P(W \in \mathscr{C}) = 1$.
- (ii) If the set of blocks $A_1,..., A_k$ are disjoint, then $W(A_1),..., W(A_k)$ are independent and normally distributed with mean 0 and variances $|A_1|,..., |A_k|$, where $|A_i|$ is the area of the block A_i .

We define functions χ_i^L , j = 1, ..., k, by

$$\chi_j^L(w) = \begin{cases} 1 & \text{if } w \subset [0, t_j L] \times [0, s_j L] \\ 0 & \text{otherwise} \end{cases}$$

For any $y_1,..., y_k \in \mathbb{R}$, we define the function $f_L = f_L(y_1,..., y_k)$ of w by

$$f_L(w) = \sum_{i=1}^k y_i \sum_{w \in \mathbf{w}} F(w) \chi_i^L(w)$$

Consider the characteristic function $\theta_k^L(\mathbf{y}) = \theta_k^L(y_1, ..., y_k)$ of random vectors

$$\left(\frac{1}{\sigma L}\sum F(w)\,\chi_1^L(w),...,\frac{1}{\sigma L}\sum F(w)\,\chi_k^L(w)\right)$$

defined by

$$\theta_k^L(\mathbf{y}) = \langle \exp[if_L(\cdot)/\sigma L] \rangle_{P_L}$$

We prove that $\theta_k^L(\mathbf{y})$ converges to the corresponding characteristic function of the Brownian sheet (see Ref. 9).

REFERENCES

- R. L. Dobrushin, Gibbs state describing coexistence of phases for a three dimensional Ising model, *Theory Prob. Appl.* 17:582-600 (1972).
- 2. J. Bricmont, J. L. Lebowitz, C. E. Phister, and E. Olivieri, Non-translation invariant Gibbs states with coexisting phases I, *Commun. Math. Phys.* **66**:1–20 (1979).
- G. Gallavotti, The phase separation line in the two dimensional Ising model, Commun. Math. Phys. 27:103-136 (1972).
- G. Gallavotti and A. Martin-Löf, Surface tension in the Ising model, Commun. Math. Phys. 25:87-126 (1972).
- G. Gallavotti, A. Martin-Löf, and S. Miracle-Sole, Some problems connected with the description of coexisting phases at low temperatures in the Ising model, in *Lecture Notes in Physics* (Springer, 1971).
- 6. G. Del Grosso, On the local central limit theorem for Gibbs processes, *Commun. Math. Phys.* 37:141-160 (1974).
- 7. Y. Higuchi, On some limit theorems related to the phase separation line in the two-dimensional Ising model, Z. Wahr. 50:287-315 (1979).
- J. Bricmont, J. L. Lebowitz, and C. E. Phister, Non-translation invariant Gibbs states with coexisting phases III: Analyticity properties, *Commun. Math. Phys.* 69:267–291 (1979).
- 9. K. Kuroda and H. Manaka, Limit theorem related to the interface of the three-dimensional Ising model, to appear.